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Abstraet--A numerical study was made of a control technique of transient oscillatory flows in Czochralski 
convection. The suppression of temperature oscillation was achieved by changing the rotation rate of 
crystal rod I~ = D0(1 + As sin(2n/tpfst)), where As denotes the dimensionless rotation amplitude and fs the 
frequency. Rased on the inherent oscillatory time period of the melt (tp), the suppression rate of temperature 
oscillation was characterized by the mixed convection parameter Ra/(Pr Re2). This parameter ranged in 
the study 0.225 ~< Ra/(Pr Re 2) <~ 0.929, which encompasses the buoyancy- and forced-convection dominant 
regimes. Computational results revealed that the temperature oscillation can be suppressed significantly by 
adjusting the control parameters. The uniformity of temperature distribution in space and in time near the 

crystal interface was scrutinized. Copyright © 1996 Elsevier Science Ltd. 

1, INTRODUCTION 

Recent advances in microelectronic technologies have 
expanded the interests in growing high-purity single 
crystals. The majority of single crystals are produced 
in industry by the Czochralski process. In this method, 
the silicon crystal is contained in a heated crucible. 
The crystal is suspended from above and is pulled 
upward as it grow:~. The entire system rotates steadily 
about the vertical central axis [1]. The rotation is 
intended to provide additional means of control of 
the whole dynamic system. 

It is known that high quality of the crystal can 
be achieved by a fluid flow field in the melt. In the 
Czochralski process, convection is generally driven by 
buoyancy and rol:ations of the crystal and crucible. 
These mutual interactions cause extreme complexities 
in the problem. Irthomogeneity stemming from vary- 
ing impurity concentrations, which is customarily 
known as the growth striation, is generated in the 
crystal when the growth conditions are not time- 
invariant. These striations affect significantly the qual- 
ity of the crystal, and microdefects in Czochralski 
silicon crystals are detrimental to the electronic 
properties of the device [2]. The striation is unde- 
sirable in semiconductors because it results in fluc- 
tuations of resistivity along the length of the crystal 
[3]. The present study aims to suppress the phenomena 
of temperature oscillation in convection. 

A literature survey reveals that there have been 
considerable efforts to minimize striations, i.e. bands 
of high impurity or dopant concentration. Some 
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modifications of the basic Czochralski technique have 
been introduced to improve the crystal quality. An 
overview was given in Langlois [4]. Among the tech- 
niques in the literature, one of the most significant 
developments is the introduction of the melt con- 
vection control by imposing magnetic fields [3-7]. The 
basic concept is to reduce convection in the melt, 
where an improvement in the micro-homogeneity of 
dopant distribution can be accomplished by altering 
the orientation and the strength of magnetic field. 
However, this technique has not been practically used 
in industry for various reasons. Another approach to 
alleviating the melt fluctuations is the crystal growing 
in a microgravity environment [5]. However, this 
method is also expensive due to difficulties in reducing 
the gravity. 

As stated in the above, existing techniques to resolve 
the striation problems have concentrated on the 
reduction of convection. As an alternative promising 
approach to homogenization of Czochralski growth, 
the introduction of forced convection by periodically 
varying the crystal rotation rate is employed in the 
present study [8]. This is termed 'the accelerated crys- 
tal rotation technique', which is referred to as ACRT 
hereafter. The basic rationale is that an optimal stir- 
ring in the crucible can be achieved by changing the 
rotation rate of the crystal. It should be noted that, 
since the rotation rates are easily manipulated by a 
simple electronic device and mechanical means, it is 
capable of saving the cost of operation and equipment 
compared to the previous techniques. Some prior rese- 
arches have been carried out on this method exper- 
imentally and numerically [8-13]. However, most of 
these studies were attempted without a sufficient 
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NOMENCLATURE 

amplification factor of crystal rod Z dimensionless axial space 
frequency factor of crystal rod coordinate. 

g gravitational acceleration 
H melt height Greek symbols 
Ma Marangoni number, - ao/aT 

; 

thermal diffusivity 

(A WP) volumetric thermal expansion 

Rc crucible radius coefficient 

RS crystal radius I- swirl velocity, ru 

Ra Rayleigh number, /?g ATH3/cw V kinematic viscosity 
Re rotational Reynolds number of crystal e dimensionless temperature 

rod, R&?/v P density 
r dimensionless radial space coordinate surface tension 
T temperature ks rotation rate of crystal rod with ACRT 
t dimensionless time %I rotation rate of crystal rod without 
u dimensionless radial velocity ACRT 

component w vorticity, o/r = awpr- auiaz 
V dimensionless azimuthal velocity * meridional stream function. 

component 
W dimensionless axial velocity Superscript 

component * dimensional variable. 

knowledge of the fluid flow phenomena, i.e. the 
inherent time period of melt oscillations was not fully 
taken into consideration. Recently, Sung et al. [14] 
made a systematical study on the oscillatory transient 
flow in a Czochralski model. The temperature oscil- 
lations were computed over a broad range of the 
mixed convection parameter 0.225 < Ra/Pr 

Re’ < 0.929. They clarified that the oscillatory flows 
are essential characteristics in Czochralski convection 
system, and these bring forth the major cause of stri- 
ations. The computed periods of oscillation were 
shown to be in excellent agreement with the exper- 
imental results of Ozoe et al. [ 151. 

Based on the preceding numerical attempt by Sung 
et al. [14], the aforesaid ACRT is imposed in the 
present study. The main attention is directed to the 
suppression of temperature oscillation by changing 
the rotation rates, Qs = Q&l +A, sin(2n/t&t)), 
where Qso represents the constant rotation rate of 
crystal rod without the application of ACRT. The 
inherent oscillatory time period of the melt, which is 
denoted by t,, is the key parameter to apply the ACRT 
in the present treatise. An assessment is made of the 
optimal values to suppress the temperature oscil- 
lations, i.e. the amplification factor (As) and fre- 
quency factor (fs) of ACRT. For the flow geometry of 
present concern, the axisymmetric flow in cylindrical 
geometry is dealt with. 

2. NUMERICAL SIMULATION 

Consider a viscous incompressible fluid of kine- 
matic viscosity v contained in a cylindrical crucible of 

height Hand radius Rc. The radius of the crystal rod 
is Rs. The flow and temperature fields are assumed to 
be axisymmetric with respect to the vertical central 
axis (z). Since the rotation speed of crystal (a,) is 
relatively low, the free-surface of the melt is taken to 
be plane and adiabatic [14]. A schematic diagram of 
the model is shown in Fig. 1. 

The governing equations, in dimensionless form, 
are as follows : 

a~ a(uw) + a(ww) 
at+-- & 

--gg-=&[ri(i$)+$] 
Ra ae 2r ar wu 

f- PrRe2r~-~~+T (I) 
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or (3(ur) (3(wr') 1 [ o (1 (3r]+ (3 r] .r  
O~ + --ffr--r + Oz I~e r or \ r -~r J ~ J-- -r- 

(2) 

(30 1 (3(ruO) (3(wO) 1 [-1 (3 / (3o~ (3:oq 
Ot + F - -  r ( 3 r  (3z , r R e  l; 

(3) 

(3{1(30\ 0/1(3q,) cot. 
~r ~ r -~7 )+  ~z ~r ~ z ,  - (4) 

For  a rotationally symmetric flow, computation time 
can be reduced if the problem is formulated by using 
the vorticity (o) and stream function (O), which are 
defined as 

09 (3w (3u 1 (3~ 1 (30 
r (3r (3z' u . . . .  r (3z' w=---.r (3r (5) 

Here, the velocity components (u, v, w) in the cyl- 
indrical coordinate system represent the radial, azi- 
muthal and axial velocities, respectively. The swirl 
velocity F in equation (2) is F = rv. The equations 
have been made d'.imensionless by adopting the fol- 
lowing non-dimensional quantities : (r, z) = (r*, z*)/ 
H, t = t*(aso), (u, v, w) -- (u*, v*, w*)/~soH, 0 = ( T -  
Tc/(Tn - Tc), in wll:ich the asterisk denotes the dimen- 
sional counterparts. The following three non-dimen- 
sional parameters emerge in the governing equations, 
Re, Pr and Ra. Re  :represents the rotational Reynolds 
number of the crystal Re = f~soI-12/v, Pr is the Prandtl 
number Pr = v/c~ and Ra is the Rayleigh number 
Ra = flg( Tn--  Tc)tt3 /~v. 

In accordance with the afore-stated ACRT ration- 
ale, the boundary and the growth interface conditions 
are written as 
z = 0,0 < r < Re/H: 

0 = 0 ,  (3q, 
(3r 

z = l,O < r < Rs /H:  

(3O 
- 0 ,  F = 0 ,  0 = 1  

(3z 

(30 0q, 
I~ =-" 0, Or (3z O, 

F :  1 1 4 A s s i n ( 2 n f s t ] ] r 2 ' \  tp ) J  

z = 1, R s / H  < r < Rc /H:  

M a  (30 
0 = 0 ,  ~o = e--;~-ee, 0r, 

r = 0 , 0 < z < l :  

0 = 0 ,  ~o=0, 

r = Rc/H,O < z < l : 

~ = 0 ,  

0 = 0  

(3F (30 
(3z 0, ~ z = 0  

(30 
r = 0 ,  T = 0  

00 (30 
(3r @@z-O' F = 0 ,  0 =  1. 

Here, As and fs represent the ACRT amplitude and 
frequency of the rotation rates of the crystal rod, 
respectively. Another non-dimensional parameter 
appears in equation (8), which is the Marangoni num- 
ber M a  = -- (OaI(3T) ATH/#ct.  

The above equations were solved by adopting a 
numerical scheme based on a finite-difference scheme. 
All the computations were conducted on the (41 x 81) 
uniform grid network. The Crank-Nicolson scheme 
was adopted for the unsteady terms. For  the con- 
vective terms, the HLPA (Hybrid Linear Parabolic 
Approximation) scheme was utilized [16]. The initial 
conditions were the solutions for purely natural con- 
vection, i.e. the case where the crucible and crystal 
were stationary. Details of the present numerical pro- 
cedure were available in Sung et al. [14]. The SIP 
(strongly implicit procedure) solver was employed in 
numerical computation [17]. The computations were 
implemented on an HP-715 workstation, and the typi- 
cal computer CPU time was approximately 8 h for 
one set of calculations. Convergence was declared 
when the maximum changes in dimensionless values 
between two successive iterations were less than 10 -4 . 
Several trial calculations were repeated to monitor 
the sensitivity of  the results to the grid size, and the 
outcome of these tests was satisfactory. 

3. RESULTS AND DISCUSSION 

The reliability and accuracy of  the present simu- 
lation were ascertained in the preceding study of Sung 
et al. [14]. In their treatise, the predicted com- 
putational results were found to be in agreement with 
the experimental data of Ozoe et al. [15]. As seen in 
Sung et al. [14], the transient temperature oscillation 
in the melt can be characterized by the dimensionless 
mixed convection parameter Ra/ (Pr  Re2). This par- 
ameter indicates the relative importance of natural 
and forced convection. When the buoyancy effect is 

(6) dominant [Ra/(Pr Re 2) = 0.929], temperature rises 
gradually and afterwards it drops rapidly. If the effect 
of the forced convection due to the rotation is com- 
parable to the effect of the buoyancy force [Ra/(Pr 

(7) Re 2) ---0.539], the temperature oscillations are in a 
more organized pattern. For  Ra/ (Pr  Re  2) = 0.225, in 
which the forced convection dominates the buoyancy 
effect, the temperature oscillations are slightly irregu- 
lar. This is due to the higher rotational speed of the top 
crystal rod [15]. Based on the flow mode characters 
pertaining to Ra/(Pr  Re2), the main consideration of 

(8) the present study is to suppress the temperature oscil- 
lation by ACRT. The working fluid employed in the 
present simulation is the same as in Sung et al. [14] ; 
the fluid properties are listed in Table 1. The simu- 

(9) lation conditions are: Ra = 1 694600, Pr = 4580, 
M a  = 0 and 0.225 ~< Ra/ (Pr  Re:) <~ 0.929. 

Now, the predicted results by the application of 
ACRT are inspected in Fig. 2 for the case of Ra/ (Pr  

(10) Re 2) --- 0.929, where the buoyancy effect is dominant. 
As addressed in Sung et al. [14], as time progresses, a 
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Table 1. Properties of the fluid 

Properties Silicon oil 

Density (p) 971 [kg m 3] 
Kinematic viscosity (v) 5 x 10 4 [m 2] 
Volumetric coefficient (fl) 9.5 x 10 -3 [K 1] 
Thermal diffusivity (c 0 l.l x l0 7 [m 2 s ~] 
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Fig. 2. The effect of (a) A s on temperature oscillation at 
(r, z) = (0, 0.7) for Ra/(er Re 2) = 0.929 ; (b) fs on tempera- 
ture oscillation at (r, z) = (0, 0.7) for Ra/(Pr Re 2) = 0.929. 

cold plume from the edge of the rotating rod descends 
periodically to the bot tom center of the rotating rod. 
The buoyancy flow ascending along the crucible wall 
dominates the cold plume. Near the wall cold flow is 
concentrated along the periphery of the rotating rod 
due to the Ekman layer, and the cold plume descends 
to the bottom center. Consequently, the periodic oscil- 
latory motion sustains a regular pattern. The tem- 
perature oscillations at (r, z) = (0.0, 0.7) are shown in 
Fig. 2 for As = 0.0. When A C R T  is imposed 
(0.0 ~< As ~< 0.40), it is seen that the effect of  As on 0 
is not  substantial a t f s  = 1.0. Recall that, in applying 
ACRT,  the rotation rate is a function of time, i.e. 
~s=f~so(l+Assin(27t/trfst)),  where fls0 is the 
rotation rate of crystal rod without ACRT.  If the 
frequency is changed (fs = 0.9), a slight suppression 
of temperature oscillation is detected. However, the 
overall impact of A C R T  on the suppression of tem- 
perature oscillation at Ra/(Pr Re 2) = 0.929 is gener- 
ally weak. 

Next, the present A C R T  is employed to the case 
of Ra/(Pr Re 2) = 0.539, where the buoyancy effect is 
comparable to the rotation effect. As shown in Fig. 3, 
the effect of  As on the temperature oscillation is 
stronger than for the case of Ra/(Pr Re 2) = 0.929. To 
quantify the suppression rate of temperature oscil- 
lation, a new parameter is defined as 1 - A0/A00. Here, 

A00 stands for the interval of temperature oscillation 
when A C R T  is not  applied, i.e. A00 = 0~,ax-- 0m~n. In a 
similar manner,  A0 represents the temperature interval 
when ACRT is imposed. The suppression rate of tem- 
perature oscillation is plotted against As in the inset of 
Fig. 3(a). As is discernible, the maximum suppression 
takes place at As -~ 0.3, where the suppression rate 
is about  20% a t f s  = 1.0, i.e. 1--A0/A00 ~_ 0.2. With 
keeping this optimal value (As = 0.3), the effect offs  
on 1 - A0/A00 is represented in Fig. 3 (b). The influence 
of fs is also substantial in a broad band of fs 
(0.9 ~<fs ~< 1.3). The maximum suppression occurs at 

fs -~ 1.2, giving the value of I -A0/A00 ~- 0.33. The 
time history of temperature oscillation in Fig. 3(b) 
indicates that, as fs increases, the period of tem- 
perature oscillation decreases slightly. 

As shown in the preceding results, the effectiveness 
of ACRT on the suppression of temperature oscil- 
lation is apparent. To scrutinize the detailed flow 
structures inside the melt, the isolines of meridional 
temperature (0) are illustrated in Fig. 4. The time- 
dependent temperature oscillation (0) and the cor- 
responding rate (f~s) are also displayed in Fig. 5. For  
comparison, three cases are selected: (a) As = 0.0; 
(b) As = 0.30, fs = 1.0; (c) As = 0.30, fs = 1.2. For  
As = 0.0, as time elapses, the cold plume from the 
edge of the rotating rod descends periodically to the 
bottom center of the rotating rod. It is known that the 
temperature increase in the melt (r, z) = (0.0, 0.7) is 
mainly caused by the rotation due to the Ekman 
suction, whereas the temperature decrease is governed 
by the buoyancy force. As shown in Fig. 5(a), 
the temperature increasing period (At ~ 160, 
- 5 0 ~ < t ~  110) is longer than the temperature 
decreasing period (At ~ 80, 110 ~< t ~< 190). This is 
because the buoyancy flow ascending along the cru- 
cible wall dominates the cold plume. The period of 
temperature oscillation is tp ~ 240. A closer inspection 
of the isotherm (0) in Fig. 4(b) for As = 0.30,fs = 1.0 
yields that the cold plume is pushed toward the peri- 
phery of the crystal rod due to the increased rotation 
speed of the crystal rod in the early stage of A C R T  
(0 ~< t ~< 60). However, as time elapses (60 ~< t ~< 180), 
the rotation speed is decreased by ACRT.  It means 
that the relative importance of the buoyancy force 
increases due to the reduced rotation speed. This 
brings forth the falling of the maximum temperature 
as compared with the case of As = 0.0. However, as 
is evident in Fig. 5(b), it is seen that the min imum 
temperature is maintained as a lower bound. This 
temperature stagnation is related to the fact that the 
flow is governed by the augmented buoyancy force. 
The influence of A C R T  on the suppression of tem- 
perature oscillation can be seen in Fig. 5(c) for 
As = 0.30,fs = 1.2. In the early stage of 0 ~< t ~< 100, 
the overall rotation speed is decreased due to ACRT. 
The Ekman suction beneath the crystal rod is atten- 
uated. This gives the rise to a drop of the maximum 
temperature. In the final stage of 100 ~< t ~< 200, the 
rotation speed is increased again by ACRT.  However, 
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Fig. 3. The effect of (a) As on temperature oscillation at (r, z) = (0, 0.7) for Ra/(Pr Re 2) = 0.539 : optimal 
value of As far suppressing temperature oscillation; (b)fs on temperature oscillation at (r, z) = (0, 0.7) for 

Ra/(Pr Re 2) = 0.539 : optimal value offs for suppressing temperature oscillation. 

t = O  t = 4 0  t = 8 0  t = 1 2 0  t = 1 6 0  t = 2 0 0  t = 2 4 0  

Fig. 4. Comour plots of isotherms (0) in the meridional plane for Ra/(Pr Re 2) = 0.539 (a) As = 0.0; 
(b) As = 0.3,fs = 1.0; (c) As = 0.3,fs = 1.2. 

the increase of  t empera ture  does no t  catch up  with the 
increase of  ro ta t ion  speed in time. As shown in Fig. 
5(c), a t ime lag (tp/4) is clearly displayed and  the total  

per iod of  tempera ture  oscillation is a b o u t  t p  _~ 200. 
Due to an  excessive evolut ion of  A C R T  in time, the 
lower b o u n d  tempera ture  is also pulled up. This  leads 
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Fig. 5. The relation between the rotation rate of crystal rod (f~s) and temperature oscillation (0) for Ra/(Pr 

Re 2) = 0.539: (a) As = 0.0; (b) As = 0.3,fs = 1.0; (c) As = 0.3,fs = 1.2. 

to the maximum suppression of temperature oscil- 
lation. 

The results pertaining to the case of Ra/(Pr 
Re 2) = 0.225 are exhibited in Fig. 6, where the forced 
convection dominates the buoyancy effect. The influ- 
ence of A C R T  on the suppression of temperature 
oscillation is seen to be remarkable. In particular, the 
suppression rate of temperature oscillation as 
As = 0.15,fs = 1.0 reaches 90%, i.e. 1 -  A0/A00 ~ 0.9. 
As compared with the previous cases, it is evident 
that the application of A C R T  is more effective in 
the forced-convection dominant  regime than in the 
buoyancy-effect dominant  regime. This is caused by 
the fact that the present ACRT,  by imposing the vari- 
ation of rotation rate of crystal rod, can give a direct 
impact on the forced convection dominant  regime 
rather than on the natural  convection dominant  
regime. 

To characterize the salient influence of ACRT in 
the forced-convection dominant  regime, the isolines 

of meridional temperature was illustrated in Fig. 7. 
When A C R T  is not applied (As = 0.0), it is seen that 
a cold plume starts to descend from the periphery of 
the rotating rod in a balloon-shape. As time elapses, 
the balloon-shaped fluid becomes colder due to the 
cold bot tom plane of  the top cylinder. The hot fluid 
under this balloon-shaped fluid breaks upwards and 
flows in the central region below the crystal rod. Since 
the hot fluid is entrained from the wall, the time- 
averaged melt temperature at (r,z)=(0.0,0.7) is 
raised as compared with the preceding one (Fig. 3). 
Moreover, the cold plume rapidly disappears. This 
gives rise to a narrow temperature interval (A00), as 
shown in Fig. 6. Next, when A C R T  is imposed as 
As = 0.15, fs = 1.0, the overall transient modes of 
temperature are similar to the previous one 
(A s = 0.0). However, due to a higher rotation speed 
(Re = 40.6), the cold plume descends far away from 
the center and then it returns slowly to the center. A 
closer inspection of the transient flow mode in Fig. 
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Fig. 6. The effect of As on temperature oscillation at (r, z) = (0, 0.7) for Ra/(Pr Re 2) = 0.225 : optimal value 
of As for suppressing temperature oscillation. 
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Fig. 7. Contour plots of isotherms (0) in the meridional plane for Ra/(Pr Re ~) = 0.225 : (a) As = 0.0 ; 

(b) As = 0.15,fs = 1.0. 
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Fig. 8. The relation between the rotation rate of crystal rod (fls) and temperature oscillation (0) for Ra/(Pr 
Re 2) = 0.225: (a) As = 0.0; (b) As = 0.15,fs = 1.0. 
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7(b) discloses that ~Lhe cold plume never collides with 
the center line, i.e. the position (r, z) = (0.0, 0.7). As 
shown in Fig. 8(a), the temperature is increased at the 
early stage of ACKT (0 ~< t ~< 80). However, for the 
case of As = 0.15, j~ = 1.0, this stage is equivalent to 
the step when the rotation is increased. This means 
that the cold plume descends vertically without the 
influence of temperature oscillation. In the final stage 
of ACRT (80 ~< t ~< 160), although the buoyancy 
effect is slightly strengthened due to the decrease of 
rotation speeds, the cold plume does not  give influence 
on the temperature oscillation at the position 
(r, z) = (0.0, 0.7). 

A major complication in the analysis of convection 
and striation in melt crystal growth is the need for 
simultaneous calculation of the melt/crystal interface 
shape with temperature, velocity and pressure fields 
[18]. Since the assumption of local thermal equi- 
librium is adopted in the present simulation due to 
lower growth rates, the menuiscus is represented by 
an orthogonal coordinate system, i.e. plane. However, 
macroscopic detail,; of the melt/crystal interface struc- 
ture depend crucia]Lly on the surface temperature dis- 
tr ibution in the radial direction [19]. To look into the 
spatial uniformity of temperature, the distributions of 

temperature are exhibited in Fig. 9, where the tem- 
perature is visualized in time (t) and space (r) at the 
near interface surface (z = 0.95). For  As = 0.0, 
the distribution of temperature in the region 
(0 ~< r ~< 0.15) is seen to be nearly uniform in space, 
as shown in Fig. 9(a). But, the temperature is oscil- 
lated in time. Outside the crystal rod (0.15 ~< r ~< 0.25) 
the temperature drops significantly. When A C R T  is 
imposed (As = 0.15,fs = 1.0), as is discernible in Fig. 

0.75 

O o.so ~ 
/ 

0.2s / 

r 

(a) 

ii 
0.o o. 1 ~ " - ' ~ - " ~ - - ~  " ~  % 

r 
(b) 

Fig. 9. The temperature distribution in space and in time 
near the crystal/melt interface for Ra/(Pr Re 2) = 0.225 : (a) 

As = 0.0; (b) As = 0.15,fs = 1.0. 
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Table 2. Effect of crystal radius on 1 -A0/A00 

Re 

Rs/Rc 20.0 26.2 40.6 

4/8 14.9% 32.8% 90.8% 
5/8 25.0% 37.8% 39.3% 

9(b), the temperature is uniform in space and in time. 
This is mainly attributed to the Ekman layer due to 
the rotation. However, the uniformity is confined to 
the region beneath the crystal rod. Outside the crystal 
rod (0.15 ~< r ~< 0.25), a significant temperature vari- 
ation is seen. This big change in temperature is caused 
by the tip vorticity, which is generated at the end 
periphery of the crystal rod. The Ekman layer is 
broken due to the periodic motion of balloon-shaped 
cold plume in the periphery of crystal rod. The lower 
heat transfer rate prevents the balloon-shaped cold 
plume from being reheated relatively. 

Much effort has been given to producing large-sized 
crystals to increase the productivity of semiconductors 
in industry. Thus, the crystal radius is enlarged from 
4/8 to 5/8, where the value indicates the ratio of the 
crystal radius (Rs) to the crucible radius (Re). The 
effects of crystal radius on 1 -A0/A00 are summarized 
in Table 2, where three Reynolds numbers are 
employed for comparison. As the Reynolds number 
increases, the influence of ACRT on the suppression 
of temperature oscillation also increases. As the 
crystal radius is enlarged, the result is not consistent. 
However, the overall trend is similar, i.e. the sup- 
pression rate by ACRT is more effective in the forced- 
convection dominant regime than in the natural-con- 
vection dominant regime. 

As stressed earlier, from the standpoint of indus- 
trial application of ACRT, the attainment of 
(1-- A0tA0o)max is a primary goal. However, all the 
prior values of 1 -A0/A00 have been obtained at the 

position (r, z) = (0.0, 0.7). The main reason to select 
this position was to extend a comparison with the 
experimental data [15]. The temperature oscillations 
at different positions for Ra/(Pr Re 2) = 0.539 are illus- 
trated in Fig. 10, where the measuring points are: 
(r,z) = (0.0, 0.9) and (r, z) = (0.3, 0.9). The position 
(r, z) = (0.0, 0.9) represents the position close to the 
interface beneath the crystal rod, while the position 
(r,z) =(0.3,0.9) is located beyond the crystal rod 
region. It is evident in Fig. 10 that the suppression by 
ACRT is more effective in the position (r,z)= 
(0.0, 0.9) than in the position (r,z) = (0.3, 0.9). Fur- 
thermore, it is seen that, at the position (r, z) = (0.3, 
0.7), the suppression of temperature oscillation by 
ACRT is deteriorated than that without ACRT. 

4. CONCLUSION 

Based on the inherent transient oscillatory flow 
modes in Czochralski convection, the present ACRT 
has been applied to suppress the temperature oscil- 
lation in the melt. By altering the rotation rate of  the 
crystal rod, a suppression of temperature oscillation 
has been accomplished. The suppression rate of 
temperature oscillation by ACRT can be characterized 
by the dimensionless mixed convection parameter 
[Ra/(Pr Re:)]. When the buoyancy effect is dominant, 
the impact of ACRT is generally weak. The appli- 
cation of ACRT is more effective in the forced-con- 
vection dominant regime than in the buoyancy-con- 
vection dominant regime. In particular, for Ra/(Pr 
Re 2) = 0.225, where the forced-convection dominates 
the buoyancy effect, the suppression rate of tem- 
perature oscillation at As = 0.15, fs = 1.0 reaches 
90%, i.e. 1 -A0/A00 ~ 0.9. When ACRT is imposed, 
the temperature distribution near the interface 
becomes uniform in the radial direction. However, the 
uniformity by ACRT is restricted within the region 
beneath the crystal rod (0 ~< r ~< 0.15). 

0 1.0 ' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' 
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Fig. 10. The effect of ACRT on temperature oscilltion at (r, z) = (0.3, 0.9) and (r, z) = (0.0, 0.9) for Ra/(Pr 

Re 2) = 0.539: (a) As = 0.0; (b) As = 0.30,fs = 1.0. 
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